Neural networks for the prediction organic chemistry reactions
نویسندگان
چکیده
Reaction prediction remains one of the great challenges for organic chemistry. Solving this problem computationally requires the programming of a vast amount of knowledge and intuition of the rules of organic chemistry and the development of algorithms for their application. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. In this work, we introduce a novel algorithm for predicting the products of organic chemistry reactions using machine learning to first identify the reaction type. In particular, we trained deep convolutional neural networks to predict the outcome of reactions based example reactions, using a new reaction fingerprint model. Due to the flexibility of neural networks, the system can attempt to predict reactions outside the domain where it was trained. We test this capability on problems from a popular organic chemistry textbook. ∗To whom correspondence should be addressed †Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA ‡Department of Computer Science, Harvard University, Cambridge MA 02138, USA 1 ar X iv :1 60 8. 06 29 6v 1 [ ph ys ic s. ch em -p h] 2 2 A ug 2 01 6
منابع مشابه
Prediction of the Experimental Data for Removal of Organic Pesticides by Carbon Nanoparticle Synthesized from Pomegranate Peel using Artificial Neural Networks
Background and purpose: The present study is aimed to investigate the prediction of the experimental data for the removal of agricultural pesticides including three herbicides Trifluralin, Glyphosate, and 2,4-Dichlorophenoxyacetic acid from aqueous solution by carbon nanoparticles synthesized from pomegranate peel using artificial neural network. Materials and Methods: Removal studies were con...
متن کاملNeural Networks for the Prediction of Organic Chemistry Reactions
Reaction prediction remains one of the major challenges for organic chemistry and is a prerequisite for efficient synthetic planning. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. We explore the use of neural networks for predicting reaction types, using a new reaction fingerprinting method. ...
متن کاملPrediction of the pharmaceutical solubility in water and organic solvents via different soft computing models
Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...
متن کاملRapid and Simultaneous Determination of Montelukast, Fexofenadine and Cetirizine Using Partial Least Squares and Artificial Neural Networks Modeling
Simultaneous determination of pharmaceutical compounds and accurate quantitative prediction of them are of great interest in the clinical and laboratory-based investigations.This work has focused on a comprehensive comparison of Partial Least-Squares (PLS-1) and Artificial Neural Networks (ANN) as two powerful types of chemometric methods. For this purpose, montelukast (MONT), fexofenadine ...
متن کاملDynamic Performance Analysis and Simulation of a Full Scale Activated Sludge System Treating an Industrial Wastewater Using Artificial Neural Network
Due to changeable nature of the industrial wastewaters, proper operation of an industrial wastewater treatment plant is of prior importance in order to keep the process stability at the desired conditions. In this mean, simulation of the treatment system behavior using artificial neural network (ANN) can be an effective tool. This paper evaluates long term performance and process stability of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016